Kimball Model of EthylAcetoacetate

We will write a simple Mathematica version 10 code to study EthylAcetoacetate. Our object is to compute the energy components of its groundstate, given a 3D structure from the PDB library, and to plot the different electronic constituents. All computations are transparent and operations explained in detail. This is a HTML copy of the interactive notebook.(ES 27 March 2013/05 October. 2014)

Input and Definitions

The coordinates are read from the Wolfram Mathematica ChemicalData repository (in pm = picometer). We use atomic units here, the universally applied system of theoretical chemistry and (micro)physics, see NIST. Length data are in Bohr: 1 a0 = 0.52917721 Å = 52.917721 pm (whose reciprocal is 0.01889726 bohr/pm, used below), electric charges in ± electron charges, and energies in Hartrees: 1 Eh = 2 Rydberg = 627.5095 kcal/mol = 2625.50 kJ/mol.

EtAcetoAc_n1a_1.gif

EtAcetoAc_n1a_2.gif

EtAcetoAc_n1a_3.gif

EtAcetoAc_n1a_4.gif

EtAcetoAc_n1a_5.gif

EtAcetoAc_n1a_6.gif

EtAcetoAc_n1a_7.gif

Sort array of atoms, show nuclear charges, number of “heavy” atoms, number of hydrogens

EtAcetoAc_n1a_8.gif

EtAcetoAc_n1a_9.gif

EtAcetoAc_n1a_10.gif

EtAcetoAc_n1a_11.gif

EtAcetoAc_n1a_12.gif

Compute Kimball radii from distance matrix

EtAcetoAc_n1a_13.gif

EtAcetoAc_n1a_14.gif

Select σ bonded pairs by a distance criterion

EtAcetoAc_n1a_15.gif

EtAcetoAc_n1a_16.gif

Build vector of core radii and proton excentricities from CH4, NH3, H2O gauge molecules (cnofhydb.pas)

EtAcetoAc_n1a_17.gif

EtAcetoAc_n1a_18.gif

From lower triangle of symmetrical matrix of distances subtract vector of core radii

EtAcetoAc_n1a_19.gif

EtAcetoAc_n1a_20.gif

EtAcetoAc_n1a_21.gif

Transpose to upper triangular matrix, show, then subtract vector of core radii from the other side, which leaves diameter of bonding clouds between “heavy” atoms and radius of H-clouds:

EtAcetoAc_n1a_22.gif

EtAcetoAc_n1a_23.gif

EtAcetoAc_n1a_24.gif

EtAcetoAc_n1a_25.gif

Determine total number of bonds and radii of bonding clouds between “heavy” atoms

EtAcetoAc_n1a_26.gif

EtAcetoAc_n1a_27.gif

EtAcetoAc_n1a_28.gif

Form an array, to be used later

EtAcetoAc_n1a_29.gif

Compute kinetic energy terms of σ bonding and core clouds. Kimballs ansatz 1.125/R2 per electron.

EtAcetoAc_n1a_31.gif

EtAcetoAc_n1a_32.gif

EtAcetoAc_n1a_33.gif

EtAcetoAc_n1a_34.gif

Total kinetic energy except for π-clouds and lone pairs

EtAcetoAc_n1a_35.gif

EtAcetoAc_n1a_36.gif

EtAcetoAc_n1a_37.gif

EtAcetoAc_n1a_38.gif

EtAcetoAc_n1a_39.gif

Determine connectivity matrix:

EtAcetoAc_n1a_40.gif

EtAcetoAc_n1a_41.gif

EtAcetoAc_n1a_42.gif

Localize double bonds and positions of π-clouds:

Transform the triangle of every target atom with two of its neighbors into the xy-plane and attach π-clouds above and below the plane to the target. Then backtransform the triangle plus π-clouds into the molecular coordinate array. This is done by the subroutine PItrans.m, that can be downloaded from the URL given below for reading it in. This subroutine is very fast!

EtAcetoAc_n1a_43.gif

EtAcetoAc_n1a_44.gif

EtAcetoAc_n1a_45.gif

EtAcetoAc_n1a_46.gif

EtAcetoAc_n1a_47.gif

EtAcetoAc_n1a_48.gif

EtAcetoAc_n1a_49.gif

EtAcetoAc_n1a_50.gif

EtAcetoAc_n1a_51.gif

Localize lone pairs, compute orientation

Transform the triangle of every target atom with two of its neighbors into the xy-plane and attach lone pair(s). Then backtransform the triangle plus lone pair(s) into molecular coordinate array. One side of the triangle is parallel to x-axis, the target atom at origin. Subroutines: XOtrans.m, and XOYtrans.m are very fast!

EtAcetoAc_n1a_52.gif

EtAcetoAc_n1a_53.gif

EtAcetoAc_n1a_54.gif

EtAcetoAc_n1a_55.gif

EtAcetoAc_n1a_56.gif

EtAcetoAc_n1a_57.gif

Bonding clouds: Atom pair, radius of cloud; statistics of sizes

EtAcetoAc_n1a_58.gif

EtAcetoAc_n1a_59.gif

EtAcetoAc_n1a_60.gif

EtAcetoAc_n1a_61.gif

Plot of Ethylacetoacetate and its partial constituents

EtAcetoAc_n1a_62.gif

Graphics:EthylAcetoacetate

Graphics:Core skeleton

Graphics:bonded σ skeleton

Graphics:π - clouds on skeleton

Graphics:Lone Pairs

Preparation of interaction matrices (w-w, w-n, check size arrays):

EtAcetoAc_n1a_68.gif

EtAcetoAc_n1a_69.gif

EtAcetoAc_n1a_70.gif

EtAcetoAc_n1a_71.gif

EtAcetoAc_n1a_72.gif

Computation of energy components (check charges):

EtAcetoAc_n1a_73.gif

EtAcetoAc_n1a_74.gif

EtAcetoAc_n1a_75.gif

Politzerratio

EtAcetoAc_n1a_76.gif

EtAcetoAc_n1a_77.gif

Results (energies in [Eh] Hartree)

EtAcetoAc_n1a_78.gif

EtAcetoAc_n1a_79.gif

EtAcetoAc_n1a_80.gif

EtAcetoAc_n1a_81.gif

EtAcetoAc_n1a_82.gif

EtAcetoAc_n1a_83.gif

EtAcetoAc_n1a_84.gif

EtAcetoAc_n1a_85.gif

EtAcetoAc_n1a_86.gif

EtAcetoAc_n1a_87.gif

EtAcetoAc_n1a_88.gif

EtAcetoAc_n1a_89.gif

EtAcetoAc_n1a_90.gif

EtAcetoAc_n1a_91.gif

EtAcetoAc_n1a_92.gif

EtAcetoAc_n1a_93.gif

EtAcetoAc_n1a_94.gif

Created with the Wolfram Language